Formula of Integral Calculus | Basic Integration Formulas | ইন্টিগ্রেশন ক্যালকুলাস এর সূত্রসমূহ

✪➤ Formula of Integral Calculus | Basic Integration Formulas
☞ The remark that integration is (almost) an inverse to the operation of differentiation means that if
$\frac {d}{dx}f(x) = g(x)$       [Differentiation]

then,  $\int g(x) dx = f(x) + c$        [Integration]

✪Most Used Formula:

$\int dx= x+ c$

$\int x dx = \frac{x^2}{2}+c$

$\int x^n dx = \frac{x^n+1}{n+1}+c$

$\int e^x dx = e^x+c$

$\int e^{mx} dx$ = $ \Large \frac {e^{mx}}{m}+c$

$\int e^{-mx} dx$ = $\Large \frac {e^{-mx}}{-m}+c$

$\int \frac{1}{x} dx= log x+c$

$\int \sin x\; dx= -\cos x\;+c$

$\int \sin mx\; dx$= $\Large \frac {-cos mx}{m}+c$

$\int \cos x\; dx= \sin x\;+c$

$\int \cos mx\; dx$= $\Large \frac {sin mx}{m}+c$

$\int sec^2 x dx= \tan x\;+c$
$\int cosec^2 x dx= -\cot x\;+c$
$\int \sec x\; \tan x\; dx= \sec x\;+c$
$\int cosecx \cot x\; dx= -cosec x+c$

$\large \int \frac {1}{1+x^2} dx$= $tan^{-1} x+c$

$\large \int \frac {1}{\sqrt{1-x^2}} dx$ =$ sin^{-1} x+c$

$\int \frac {f'(x)}{f(x)} dx= log f(x)+c$

$\int uv$ $dx$= $u \int v dx - \int[ \frac {d}{dx}(u)$ $\int v$dx$ ]$dx + c


📗 Download as PDF

📗 Download as Picture


Made By Sbook99



Thank You for Reading.
Share:

Popular

Labels Cloud

Blog Archive

Recent Posts

Subscribe by Email